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Stationary state in N-body system with power law interaction
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Many self-gravitating systems often show scaling properties in their mass density, system size, velocities,
and so on. In order to clarify the origin of these scaling properties, we consider the stationary Btdiedyf
system with inverse power law interaction. As a simple case, we consider the self-similar stationary solution in
the collisionless Boltzmann equation with power law potential and investigate its stability in terms of a linear
symplectic perturbation. The stable scaling solutions obtained are characterized by the power index of the
potential and the virial ratio of the initial state. It is suggested in general that the nonextensive system has
various stable scaling solutions than those in the extensive system.
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[. INTRODUCTION dimensionD and the exponent of inverse power of the po-
tential «.

There are many self-gravitating systems that are charac- In this paper, we study the quasiequilibrium state of
terized by some scaling properties. For example, the intefN-body system with a power law potential. As a first step, we
stellar medium shows that its velocity dispersieris power ~ consider the collisionless Boltzmann equati¢@BE) in
law related with the system sizeor massM [1] (o~ L%38 place_ of N-body system, derive t_he self-similar statipna_ry
~M©®3), and isothermal contour is characterized by the fracSolution of CBE(which has a scaling property appearing in
tal dimensionD ~1.36[2]. The observations by the Hubble the quasiequilibrium sta}eand discuss the linear stability by
space telescope show that elliptical galaxies have a powépe use of energy functional analy$isl—14. .
law density distributiorp~r " (at outer regionn~4, and In Sec. .“’ we show some general propertlesNab(_)dy
at inner regionn~0.5—1.0 for the bright elliptical galaxies systems with power law potential. In Sec. Ill, we derive the

) RO self-similar stationary solution of CBE with an attractive
andn-~2 for the faint one¢3]). The distribution of the gal- 1/r« potential assuming spherical symmetry and isotropic or-

axies and the cluster of galaxies can be characterized by the, .- inD-dimensional space. Stability for the linear per-

fractal dimensionD~2 [4]. In cosmological simulations yihation around the self-similar stationary solution is inves-
based on the standard cold dark matter scenario, the dens'l%ated in Sec. IV. Section V is devoted to discussion.

profile shows a power law distributiotat outer regionn
~3, and at inner regiom~1.0—1.5[5,6]).

Recently, in order to study the statistical properties of a I
self-gravitating system, we proposed the self-gravitating ring  In this section, we show some general characteristic prop-
model[7], where all particles are moving on a circular ring erties ofN-body system with power law potential.
located in three-dimensional space, with mutual interaction We write the Hamiltonian for theN-body system with
of gravity in three-dimensional space. The numerical simupower law potential in the form
lation shows that the system at the intermediate energy scale,
where the specific heat becomes negative, has some peculiar P2 N o
properties such as non-Gaussian and power law velocity dis- H= Z — ,
tribution [ f(v)~v 2], scaling mass distribution, and self- =2moiS
similar recurrent motion. In this model, thealo particles
that belong to the intermediate energy scale are considered weherer;;:=|r;—r;| and « controls the range of interaction.
play an important role in realizing such specific characters. In this system, the virial equilibrium condition becomes

We are interested in the origin of these scaling properties
from statistical-mechanical point of view. In order to study 2(K)+ a{®)=0, (2
the statistical properties of long-range interaction such as
gravity, Ising model, and spin glass, the model with POWery here(K) is the time averaged kinetic energy afbl) is the

law potential has been used, which revealed anomalous prog,q averaged potential energy. From the expressienk
erties[8—10]. For example, a gravitational-like phase transi- . ¢ e have

tion [8], reduction of mixind 9], and long relaxatioh10] are

observed. Using a model with an attractive “Lpotential in o o
generalD-dimensional space, we can control the extensivity H=— _a<K>:_a<q,>_ 3)
of the system and the specific heat by changing the spatial a 2

. N-BODY SYSTEM WITH POWER LAW POTENTIAL

-, 1

i]

From Eq.(3), the signature of the specific heat is determined
*Electronic address: osamu@phys.ocha.ac.jp by the signature of the term (2— )/ .
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TABLE 1. In the system with an attractive rf/ potential in  wherep := ‘/Ur2+020+ Ui and® is a potential. The potential
D-dimensional space, the property of the specific heat and the exp gatisfies the following equation:

tensivity is shown.

0<a<2 a>2 rDlar(r“”ﬁrCI)):SzDGf vPHdo, ®
Specific heat Negative Positive
where Sp:=27""2/T'(D/2). In the case ofa=D-2, the
a<D a>D above equation corresponds to the Poisson equation.
Extensivity Nonextensive Extensive A self-similar stationary solution satisfies the following
equation:
. - - f=
In order to clarify the extensivity or the nonextensivity of Ld=0, ©
the system, we focus on thH¢ dependence of the potential where
energy® by fixing the number densiti{/LP [15]: _
£k1=kl5i:5r(9r+ VU(9U+/.Lm&m (10)
fw fN(lID)derflrfaN N1-a/D (4 is a Lie derivative with respect to the vectom phase space,
N and é, v, andu are arbitrary constants.

In a dimensional space of length, velocity, and mass, we
If the N dependence of the potential energy per particle disintroduce vectorsa=(8,v,u) and d;. The vector a
appears foN—, we define the system as extensive. Oth-=(§,»,u) describes changes in the logarithms of dimen-
erwise, we define the system as nonextensive. In the case gibonal quantities. Each dimensional quanfity the problem
the gravity inD-dimensional space, sinee=D —2, the sys-  has its dimension represented by the vedkar Using these
tem is always nonextensive. We summarize the signature ofectorsa andd;, the action ofk reads

the specific heat of the system and the extensivity in Table I.
ﬁkf:(df'a)f. (11)

lll. SELF-SIMILAR STATIONARY SOLUTION IN CBE The dimensional quantities in current probleing, and

. . . - . .G have the following dimensional covectors:
In this section, we derive a self-similar stationary solution

in the CBE: d;i=(-D,—-D,1),
df of dy=(0,2,0), (12
5= 5 HLHHI=0, (5) ?
dG:(a,Z,_l).

wheref = f(x,v,t) is a mass distribution function afé,B] The requirement of the invariance &f under the rescaling
denotes the Poisson bracket. group action(10) impliesdg-a=0,

The stationary solutiofi, satisfies the following equation:
m=ad+2v. (13

i 2 owi afo_ 5 The dimensional space is reduced to the subspace of
[fo. ]_i:1 ot oaw ©) length and velocity, wherein the rescaling group elengent
=(4,v), and

wherew'={x,v}. di=(a—D,2—-D),
For the coupled CBE and Poisson equation, Henriksen
and Widrow[16] studied the self-similar stationary solution dp=1(0,2). (14
in CBE with spherical symmetry in three-dimensional space ] . )
by applying the systematic method that is based on the work Here we define the new coordinat®r) and X in re-

of Carter and HenriksefL7]. placement of the original coordinateandv, such that
Following Henriksen and Widroyl6], we study the self- [R=1 (15)

similar stationary solution with spherical symmetry and iso- k '

tropic orbit case in generdD-dimensional space, the case L, X=0. (16)

thatD=3 anda=1 reduces to the work by Henriksen and
Widrow [16]. By the generalization of the spatial dimension From Egs.(15) and(16), we choose
D and the exponent of power of potentia] we intend to SR
investigate the relation between the extensivity of the system rlo[=e, 17)
and the self-similarity. _yarR
From Eq.(6), mass distribution functiofi(r,v) obeys v=Xew. (18
The transformation from the original coordinatey) to the
vd f—0,®9,f=0, (7)  self-similar coordinateR,X) is shown in Appendix A.
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Under the new coordinate, these physical quantitiesd
& can be written in the form

f(X,R)=f(X)e (O~ «o+(O=21IR, (19

d(X,R)=Dd(X)e?R, (20)

Substituting Eqs(19) and(20) into Egs.(7) and(8), these
equations for a bounded solution yield

5
D—2+(D—a);X2

- — , 21
X2+ 2d @)

dinf
dinX

2V2|5|D7a72

5] G
2+%¢=ng] —2®XP-TFdX.
0
(22

Without loss of generality, we can set=1.
Solving Egs.(21) and (22), we have the following solu-
tion:

f_= C|X2+ Zq_)| —[(D—a)5+(D—2)]/2' (23)
where
12+ ad||6]P~*"2(D/2)T[2+ (a— D) 8/2]

 24°G|-20|(@ D)2 ([4—D+(a—D)5—D]/2)
(24)

and the following condition must be satisfied:

(D—a)8<4-D. (25)

Since® <0, from Eqg.(22) we obtain the additional condi-

tion,

ad<—2. (26)

If these condition Eq925) and(26) are actually satisfied,
we have the bounded self-similar stationary soluti¢23)
and (24). The mass distribution functiof) the mass density
p, and the velocity distributiori(v) become, respectively,

f(r,v)zc|2E|7[(Dfa)5+(D72)]/2, (27)
p::st dov® H(r,p)~re PP, (28
f(v)==SDf drrP(r,v)~peo*27D, (29
whereE denotes the mean field energy
1 2
E:zzv + . (30

PHYSICAL REVIEW E66, 051112 (2002

(Po) (D-a)5-4
(Ky 2D

Since the solution(27) we obtained is a bounded solution,
which satisfies the following condition:

(31)

(D—a)6—4
—_—<

2D -1

(32

the specific heat of the self-similar stationary solution is al-
ways negative. TheS, corresponds to a virial equilibrium
state:

(a#D)

8= (33

arbitrary (a=D).
If (D—a)(6—46,)<0, the potential energy in this state is
more dominant than in the virialized state.

The relation between pressuPeand mass density can
be written in the form

P~p1+{l/l+[a—D]5/2}. (34)

The above equation of state corresponds to Polytropes gas
when identifying the Polytropes indexas 1+ (a—D) /2.

Note that fora=D, there is no self-similar stationary solu-
tion corresponding to the isothermal state.

As for gravity case ¢=D —2), the above solution&4)
and(27) in D=3 correspond to the solution derived by Hen-
riksen and Widrow[16]. For D=1 and D=2, where a
=D—-2=<0, we show the self-similar stationary solution in
Appendix B.

IV. LINEAR PERTURBATION ANALYSIS

In this section, we investigate the stability of the self-
similar stationary solution derived in the preceding section
for a symplectic linear perturbation, by energy functional
analysis[11-14.

As for the linear stability of the stationary solution in
CBE of the gravity in three-dimensional space, there has
been much resear¢i8-24,11-14 For the stationary state,
assuming spherical symmetry, characterized by the mass dis-
tribution functionf specified as a function of the mean field
energy E and the squared angular momentudd, if
afo/JE<0 andaf,/9J?><0, then the system is stable to the
linear perturbation.

Following the work by Perez and Aly13], where the
stability of stationary solution in the coupled CBE and Pois-
son equation with spherical symmetry in three-dimensional
space were studied, we study the stability of the solution
obtained in the preceding section.

First, we explain a symplectic linear perturbation by en-
ergy functional analysi§l1-14. In terms of the mass dis-

The ratio of the average of the kinetic energy to the po-ribution functionf(x,v,t), the HamiltonianH is written as

tential energy is as follows:

follows:
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2 G 1
H=j dr%f(x,v,t)+5f drf dr’g(|x 5(2)H=J dFE[g(Z),f0]+§f drE[g™,[gW),fo]]

—x'Df(x,0,0)f(x",0' 1), (35 G ) ) .
w5 [ dr [ driaix-xDig®.fellg® fgl

wheredI" :==dPxdPv is the 2D phase volume element and the

kernelG satisfies (46)

The first term in Eq(46) also vanishes and by the integration

¢(X)=Gf dl G(|x=x"|)f(x",v’,t). (36) by parts; Eq(46) is rewritten in the form

We consider a small perturbation around the stationary
solution fy. The distribution function and the Hamiltonian
can be expanded around the stationary solution as follows:

1 G
§SH=— Ef dr'[g™®, fol[g™M,E]+ Ef dr

x [ drrax-x Dig® fellg® 1gl. @7

f(x,v,1)=fo+ 6Wf+6Df+.. . (37)
Hereafter we consider the case that the stationary solution
= (1) 2) o
H=Ho+ 8MH+6®H + ... (38) fo is a function of only the energk. In this case, we obtain

Here we consider any symplectic perturbation, which can W f1=F gD E 48
be generated from the stationary solutibn by use of a (9" Tol=Fel " El, “8)
canonical transformation. By using some generating function
K, any symplectic deformation can be expressed in the form f de[g(l),fo]=f dPvd(Feog™), (49)

f=elk 15, (39

From the above definitioi39), f can also be expressed as
follows:

1 1
(40)
Introducing a small parameterwhich represents the am-

plitude of the perturbation, we expand the generating func
tion K as
K=eK®+ K@+ SKB+ .. (41)

Further identifyingg™=€e"K(™, we obtain the perturbed
guantities in Eq(37) in the form

sWi=1g® 1,1, (42
2) (2) 1 1) g
0Pt =[g®fo]+ 5[gM.[gM,fo] ] (43
The first-order term in Eq38) becomes
5<1>H=f dI'e[g™V), o], (44
whereE is the energy of a particle,
v2
E=:?+CD0, (45)

where ® is the potential energy generated fiyy SinceE
andf, are conserved quantitied")H=0.
The next order term in Eq38) yields

WhereFE:=&Ef0.
Integrating by parts and using Eq48) and(49), we have

1 G
s@h=3 [ ar(~Follg® e+ 5 [ ara~Feog®)

x [ driou(-Fw'e®alx-xD. 50

The linear perturbatiog® has two kinds of gauge mode.
@ gM=gM(E). In this case, the linear perturbation of the
mass distributiorsf is trivially zero. (b) gV=av (ais a
constant This perturbation is due to the translation of the
center of mass. In order to consider the physical perturbation,
we investigate the linear perturbation excluding the above
gauge modes.

The stability for the linear perturbatid24,25 reads

If 6®H>0, thenthe systemisstable. (51)

A. Spherical mode
Since the first-order perturbed potenti#P®(r) satisfies

rD71a,(rﬂ“araﬂkb(r))

=S, f d®v g 5]

SHG

&r(rle de’F,';vr'g(l)’),

(52

rD—l

the spatial derivative o6)®(r) becomes
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3,6V (r)=

SpG ,
ra—DD+2f dPv'FLv" g, (53

From Egs.(50) and (53), we have
262 = [ dr(-Folig,E) - [ drs,
X (—Fgo'g®)sDa(r)
dPx
=f dT(—FE)|[9(1),E]|2—SDGJ o2
XJ de(—FEvg(l))J’ de’(—F{Evr’g(l)').
(54)
Introducing new variables,
g®=:rv"u(rv,t), (55)

and using the Schwartz’s inequality, we have

25<2>H=f dl'(=Fg)|[urv"E]|?-GS

dDX D 2
XJ’ ra—D+2f d°v[—Fer(v")“u]

xj AP’ [—FLr(v')2u']
>f dl'(—Fg)|[urv’,E]|?

dPx

_GSDJ mf dPu[ —Fer(v)?u?]

xf dPv'[—Fgir(v'")?]
G r n2, 2
- dF(—FE>{|wvnE]|2— Sf’r(—D);”’]
(56)

wherep, is the nonperturbed mass density,

po’=f defo:f d°v(—Fg)(v")? (57)

PHYSICAL REVIEW E66, 051112 (2002

GS(rv")2u?pg
25(2)H>f dr(—FE){ [uro”,E]>~ ~,eDiz

=f olr<—FE>‘(rzﬂ)zl[u,E]l2+Iulzl[rv'.E]l2

r 2 r _
+ro'[us,E]rv' E] D72

GSD(rUr)Zlepo]

:f dr(_FE)| (ro")?|[w, E1I?+|ul?|[ro", E]J?
+[u?roro", E]L,E]-|x|?rv"[[rv",E],E]

GS(rv")?upo
. 2 2 — &2 e
| wl?([ro",E] o2

:j dr(—FE)| (ro")?|[w,E]?

G 2,2
—|ﬂ|2rvr[[rvr,E],E]—w1. (58)

Using the following relation:

d2<I>0+3d(I>o
dr? r dr

[[rv",E],E]= —rvr(

GSHpy 2—a ddy
:_rvr(ra_D+2+ r dr_ 1 (59)
we obtain the final expression of the form
1 2—a dd®
5= [ ar(—Foro? I B+ 2.
2 r dr
(60)

From Egs.(42), (47), and (60), if 52 H=0 (whenFg<0
and a<2), 8Mf=0. Since this is a gauge mode, we con-
clude that

if Fe<0 and a<2, then 5?H>0. (61)

From the self-similar stationary solution, E(23), we
have

Fe=sgnE)[(a—D)&+2—D]C|2E|l(«~D)o-DI2,
(62

As an explicit example, we consid®=1 case. From
Egs.(25), (26), (32), and(61), the self-similar stationary so-
lution, Eq.(27), is stable if the following condition is satis-
fied:

Using the property of the Poisson bracket and the fact that 1 )
the integral of the Poisson bracket over the phase space van- _ <5< — = (1<a<2),

ishes, Eq(56) can be rewritten in the form
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nonextensive extensive (89F)2

d : 5PH= J dr +Fe(6Wd)2—250f 5M

4 / negative —Fe

specific heat G
2 N dPx|V 5Vp|2,
virial equilibrium (8=§,) 2S5,
0 1 N (1)F)2
1 S\Wt) 1
2 =—fd ( + — | d°x{|VsDd|?
/ .. 2 -Fe 25
positive
-4 specific heat
pe ~Sp Jde<—FE)|6<”<D|2H- (68)
FIG. 1. Stability chart for the one-dimensional cage=(1). ) ) o ]
The dark region corresponds to the stable reg&) in the param- Moreover, using the new variable, which is defined by
eter space d,«). The properties of the specific heat and the exten- 1) ]
sivity are also shown. OHD=w(x,1) 3, Po, (69)
) we can rewrite Eq(68) in the form
5<_Z (0<a=<1). (63 (82
SPH = fdr —F ZSDJd x{ (0, Do) | VW|?
In Fig. 1, we show the region where the stable self-similar E
stationary solution exists in the parameter spaeg’y. o 5 5 )
Note that in the above calculation, we use the integration _SDJ d°v(—Fg)|w|?| —[w[?9, DV Zd, Dy .

by parts and neglect the surface term at the origin. Since the
self-similar stationary solution obtained in this paper is sin- (70)

gular at the boundary, the surface term cannot be neglected By straightforward calculation, we obtain
in general. In the realistic situation, however, the self-
similarity appears in the intermediate scale since the system

has a cutoff scale in the short distance. We suppose that the VzardJo:SDj dPvF (71
self-similar stationary solution can be connected with some
regular solution near the boundary by regularization, such as Bv using Wirtinaer's inequality. we have
r—(r?+a?)? wherea is a cutoff scale, and the boundary y 9 9 quaiity,
term can be neglected. D_1
2 _ 2
B. Aspherical mode r

Next we consider the aspherical mode. Since it is difficultwhere
to analyze a general case, we study the gravity case in
D-dimensional spacea(=D —2). rJd
By the integral of Poisson equation over the configuration V5=V - I ar
space and integration by parts, we have
From Eqgs.(700—(72), we get the final expression in the

1
_§f de|V5(1)<D|2=f drsWfsep,  (64) form

5(1)? 2
( ) + = | dPx(9,P,)?

2
_FE 28 |(9rW|

where SAH= fdl“

SMP = J dPvGgsMf. (65)

D-1
+|VsW|2—r—2|W|2

From Egs.(47), (64), and(65), we have

6(1)~ 1 D 2 2
1 sVH2 G f - —f d°X(J,Po)?| 9, w|*.
5(2)H:—f ar =" ——f d®x|VsDd 2. (66) “2] TR s
2 “Fe 25 73
Here we introduces™’f as follows: From Eq.(73), if §®H=0 (when Fg<0), then sf
=0 or gM=av. Since this is a gauge mode, we conclude
SV =:FesWad + 57, (67)  that

Substituting Eq(67) into Eq. (66), we obtain if Fg<O0, then 8?H>0. (74)
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nonextensive 6~ —3. This case belongs to the stable self-similar station-
g positive ary solution. . ' . . .
specific heat The stablg _self-sw_nllla_r stationary solution we obtained in-
2 o o cludes the virial equilibrium state in the case &t &, . As
T virial equilibrium (6=4,) for the extensivity of the system, the nonextensive system
0 e has far more stable scaling solutions than the extensive sys-
1 tem in the parameter spacé,( «, D).
-2 negative In the time evolution of the collisionless system, assum-
specific heat ing the spherical symmetry and isothermal case, the Larson-
=4 Penston solution that shows self-similar collapse is the at-

tractor[26]. By such a self-similar time evolution of system,
FIG. 2. Stability chart for the gravity caseD—2). The dark  we expect that the class of the stable self-similar stationary

region corresponds to the stable regi@s) in the parameter space solution obtained in this paper plays an important role as a

(8,D). The properties of the specific heat and the extensivity arequasiequilibrium state with a long-range interaction such as

also shown. gravity. In the realistic situation, since the anisotropic veloc-

ity space is important, we would like to extend this analysis

This condition is weaker than the conditiggd). In the grav-  to the anisotropic case in our future work.

ity case @=D—2), from EQgs.(25), (26), (32), and(61), if

the following condition is satisfied, the self-similar stationary ACKNOWLEDGMENTS

solution, Eq.(27), is stable:
We would like to thank Professor M. Morikawa, Y. Sota,

2 and T. Tatekawa for useful discussions and comments.
5<— —— (2<D=2+2)
8y = D-2 (75

APPENDIX A: TRANSFORMATION TO THE
5<2—D (2++2<D<4). SFO ON TO

SELF-SIMILAR COORDINATE

In Fig. 2, we show the region where the stable self-similar Using the original coordinater (v), the self-similar coor-
stationary solution exists in the parameter spdges). This  dinate R,X) is defined by

stability condition(61) is consistent with the work by Perez
and Aly[13] (a=1,D=3). R:=56""In(r|4)), (A1)
V. DISCUSSION Xi=ve "R, (A2)
We studied the self-similar stationary solution in colli- ~ The derivative with respect to the original coordinate can
sionless Boltzmann equation with the attractive®lpoten- b€ expressed by the self-similar coordinate of the form
tial. Assuming the spherical symmetric and isotropic orbit in R gX
D-dimensional space, we investigate the linear stability of (9r=(_) Int _)
the solution. In the above model, we can control the exten- Iy or
sivity of the system and the signature of the specific heat by (A3)
changing the spatial dimensidd and the exponent of in-
verse power of the potential. 5 :( %)
The self-similar stationary solution can be expressed in v o
the form of the power law of the energy. The exponent of the
power is determined by the power of the potentialspatial
dimensionD, and the scaling parametér Here we interpret
S as a parameter that denotes the virial ratio of the initial
state. _ _ _ For the case that the potenti® is positive, Eq.(22) is
By use of the energy _funcuonal_ approach, we |.nvest|gateqlnodiﬁed as
the stability of the self-similar stationary solution in terms of
a symplectic linear perturbation. As for the spherical sym- 5
metric and isotropic orbit of the gravity in D-dimensional 2v
space ¢=D—2), we found that the system is stable if the
mass distribution function decreases monotonically and the
spatial dimension is less than 4. As for the power law poten- 1.D=1 case
tial in one-dimensional spaceDE1), we found that the . L= .
system is stable if the mass distribution function decrease§'nce the potentiab is positive, from Eq/(B1),
monotonically and the inverse power index of the potential is 5<2. (B2)
less than 2. The self-gravitating ring mod&] is similar to
the case ofr=1 in one-dimensional space. From the form of By integrating Eq.(B1), we have a self-similar solution
the velocity distribution obtained by a numerical simulation, (23) and

dx=sgr(d)e” R(dg— vXdy),
R

(9)(: e VRF?)( . (A4)
R

APPENDIX B: STABILITY CONDITION FOR THE
GRAVITY CASE IN D=1 AND D=2 (a=D-2)

2+(D—2)é}d_>:SZwaXle_dX (B1)
14 D 0 '
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2 81(5-1/2)[ 20| In this case, from Eq(B1), the condition that a bounded
B J7GI(6—1) : (B3)  self-similar solution exists yields
- —
if the following condition is satisfied: 5>§, (8
o>1. (B4)

and the integral constant of E@®3) is

From Egs.(B2), (B4), (61), and(74), the stability condi- _
tion for linear perturbation yields 2T (9)]20]°

= (B7)
1<5<2. (B5) mo%GT (6-1/2)

The ratio of the average of the kinetic energy to the po- From Egs.(61), (74), and (B6), the stability condition
tential energy is the same as Eg1) in D=1. However, if ~adainst linear perturbation yields
6=<2, the integral of the kinetic energy over the velocity

space diverges. For this reason, there does not exist a stable 5> } (B9)
self-similar stationary solution iD=1. 2°
2.D=2 case The ratio of the average of the kinetic energy to the po-

_ tential energy is the same as E&1) in D=2. However,
If the potential ® is negative, the condition that the similar to theD=1 case, iff<2, the integral of the kinetic
bounded self-similar solution exists is the same as Ef8.  energy over the velocity space diverges. Finallyjif2, the
and(26). Since this case does not satisfy the condit®®,  self-similar stationary solution iB =2 is stable. In this case,

the only case is thab>0. the specific heat is always positive.
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