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Stationary state in N-body system with power law interaction

Osamu Iguchi*
Department of Physics, Ochanomizu University, 2-1-1 Ohtuka, Bunkyo, Tokyo 112-8610, Japan

~Received 31 December 2001; published 27 November 2002!

Many self-gravitating systems often show scaling properties in their mass density, system size, velocities,
and so on. In order to clarify the origin of these scaling properties, we consider the stationary state ofN-body
system with inverse power law interaction. As a simple case, we consider the self-similar stationary solution in
the collisionless Boltzmann equation with power law potential and investigate its stability in terms of a linear
symplectic perturbation. The stable scaling solutions obtained are characterized by the power index of the
potential and the virial ratio of the initial state. It is suggested in general that the nonextensive system has
various stable scaling solutions than those in the extensive system.
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I. INTRODUCTION

There are many self-gravitating systems that are cha
terized by some scaling properties. For example, the in
stellar medium shows that its velocity dispersions is power
law related with the system sizeL or massM @1# (s;L0.38

;M0.2), and isothermal contour is characterized by the fr
tal dimensionD;1.36 @2#. The observations by the Hubbl
space telescope show that elliptical galaxies have a po
law density distributionr;r 2n ~at outer region,n;4, and
at inner region,n;0.5–1.0 for the bright elliptical galaxie
andn;2 for the faint ones@3#!. The distribution of the gal-
axies and the cluster of galaxies can be characterized by
fractal dimensionD;2 @4#. In cosmological simulations
based on the standard cold dark matter scenario, the de
profile shows a power law distribution~at outer region,n
;3, and at inner region,n;1.021.5 @5,6#!.

Recently, in order to study the statistical properties o
self-gravitating system, we proposed the self-gravitating r
model @7#, where all particles are moving on a circular rin
located in three-dimensional space, with mutual interact
of gravity in three-dimensional space. The numerical sim
lation shows that the system at the intermediate energy s
where the specific heat becomes negative, has some pec
properties such as non-Gaussian and power law velocity
tribution @ f (v);v22#, scaling mass distribution, and sel
similar recurrent motion. In this model, thehalo particles
that belong to the intermediate energy scale are considere
play an important role in realizing such specific characte

We are interested in the origin of these scaling proper
from statistical-mechanical point of view. In order to stu
the statistical properties of long-range interaction such
gravity, Ising model, and spin glass, the model with pow
law potential has been used, which revealed anomalous p
erties@8–10#. For example, a gravitational-like phase tran
tion @8#, reduction of mixing@9#, and long relaxation@10# are
observed. Using a model with an attractive 1/r a potential in
generalD-dimensional space, we can control the extensiv
of the system and the specific heat by changing the sp
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dimensionD and the exponent of inverse power of the p
tential a.

In this paper, we study the quasiequilibrium state
N-body system with a power law potential. As a first step,
consider the collisionless Boltzmann equation~CBE! in
place of N-body system, derive the self-similar stationa
solution of CBE~which has a scaling property appearing
the quasiequilibrium state!, and discuss the linear stability b
the use of energy functional analysis@11–14#.

In Sec. II, we show some general properties ofN-body
systems with power law potential. In Sec. III, we derive t
self-similar stationary solution of CBE with an attractiv
1/r a potential assuming spherical symmetry and isotropic
bit case inD-dimensional space. Stability for the linear pe
turbation around the self-similar stationary solution is inve
tigated in Sec. IV. Section V is devoted to discussion.

II. N-BODY SYSTEM WITH POWER LAW POTENTIAL

In this section, we show some general characteristic pr
erties ofN-body system with power law potential.

We write the Hamiltonian for theN-body system with
power law potential in the form

H5(
i 51

N Pi
2

2m
2(

i , j

N
Gm2

r i j
a

, ~1!

wherer i jªur i2r j u anda controls the range of interaction.
In this system, the virial equilibrium condition become

2^K&1a^F&50, ~2!

where^K& is the time averaged kinetic energy and^F& is the
time averaged potential energy. From the expressionH5K
1F, we have

H52
22a

a
^K&5

22a

2
^F&. ~3!

From Eq.~3!, the signature of the specific heat is determin
by the signature of the term2(22a)/a.
©2002 The American Physical Society12-1
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In order to clarify the extensivity or the nonextensivity
the system, we focus on theN dependence of the potentia
energyF by fixing the number densityN/LD @15#:

F

N
;EN(1/D)

drr D21r 2a;N12a/D. ~4!

If the N dependence of the potential energy per particle d
appears forN→`, we define the system as extensive. O
erwise, we define the system as nonextensive. In the cas
the gravity inD-dimensional space, sincea5D22, the sys-
tem is always nonextensive. We summarize the signatur
the specific heat of the system and the extensivity in Tab

III. SELF-SIMILAR STATIONARY SOLUTION IN CBE

In this section, we derive a self-similar stationary soluti
in the CBE:

d f

dt
5

] f

]t
1@ f ,H#50, ~5!

wheref 5 f (x,v,t) is a mass distribution function and@A,B#
denotes the Poisson bracket.

The stationary solutionf 0 satisfies the following equation

@ f 0 ,H#5(
i 51

2D
]wi

]t

] f 0

]wi
50, ~6!

wherewi5$x,v%.
For the coupled CBE and Poisson equation, Henrik

and Widrow@16# studied the self-similar stationary solutio
in CBE with spherical symmetry in three-dimensional spa
by applying the systematic method that is based on the w
of Carter and Henriksen@17#.

Following Henriksen and Widrow@16#, we study the self-
similar stationary solution with spherical symmetry and is
tropic orbit case in generalD-dimensional space, the cas
that D53 anda51 reduces to the work by Henriksen an
Widrow @16#. By the generalization of the spatial dimensio
D and the exponent of power of potentiala, we intend to
investigate the relation between the extensivity of the sys
and the self-similarity.

From Eq.~6!, mass distribution functionf (r ,v) obeys

v] r f 2] rF]v f 50, ~7!

TABLE I. In the system with an attractive 1/r a potential in
D-dimensional space, the property of the specific heat and the
tensivity is shown.

0,a,2 a.2

Specific heat Negative Positive

a,D a.D

Extensivity Nonextensive Extensive
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wherevªAv r
21vu

21vf
2 andF is a potential. The potentia

F satisfies the following equation:

1

r D21
] r~r a11] rF!5SD

2 GE vD21f dv, ~8!

where SDª2pD/2/G(D/2). In the case ofa5D22, the
above equation corresponds to the Poisson equation.

A self-similar stationary solution satisfies the followin
equation:

Lkf 50, ~9!

where

Lkªki] i5dr ] r1nv]v1mm]m ~10!

is a Lie derivative with respect to the vectork in phase space
andd, n, andm are arbitrary constants.

In a dimensional space of length, velocity, and mass,
introduce vectors a5(d,n,m) and df . The vector a
5(d,n,m) describes changes in the logarithms of dime
sional quantities. Each dimensional quantityf in the problem
has its dimension represented by the vectordf . Using these
vectorsa anddf , the action ofk reads

Lkf 5~df•a! f . ~11!

The dimensional quantities in current problem,f, F, and
G have the following dimensional covectors:

df5~2D,2D,1!,

dF5~0,2,0!, ~12!

dG5~a,2,21!.

The requirement of the invariance ofG under the rescaling
group action~10! implies dG•a50,

m5ad12n. ~13!

The dimensional space is reduced to the subspace
length and velocity, wherein the rescaling group elemena
5(d,n), and

df5~a2D,22D !,

dF5~0,2!. ~14!

Here we define the new coordinatesR(r ) and X in re-
placement of the original coordinater andv, such that

LkR51, ~15!

LkX50. ~16!

From Eqs.~15! and ~16!, we choose

r udu5edR, ~17!

v5XenR. ~18!

The transformation from the original coordinate (r ,v) to the
self-similar coordinate (R,X) is shown in Appendix A.

x-
2-2
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Under the new coordinate, these physical quantitiesf and
F can be written in the form

f ~X,R!5 f̄ ~X!e2[(D2a)d1(D22)n]R, ~19!

F~X,R!5F̄~X!e2nR. ~20!

Substituting Eqs.~19! and~20! into Eqs.~7! and~8!, these
equations for a bounded solution yield

d ln f̄

d ln X
52

FD221~D2a!
d

nGX2

X212F̄
, ~21!

2n2uduD2a22F21
ad

n GF̄5SD
2 GE

0

A
22F̄XD21 f̄ dX.

~22!

Without loss of generality, we can setn51.
Solving Eqs.~21! and ~22!, we have the following solu-

tion:

f̄ 5CuX212F̄u2[(D2a)d1(D22)]/2, ~23!

where

C5
u21aduuduD2a22G~D/2!G@21~a2D !d/2#

2pDGu22F̄u(a2D)d/2G~@42D1~a2D !d2D#/2!
,

~24!

and the following condition must be satisfied:

~D2a!d,42D. ~25!

SinceF̄,0, from Eq.~22! we obtain the additional condi
tion,

ad,22. ~26!

If these condition Eqs.~25! and~26! are actually satisfied
we have the bounded self-similar stationary solutions~23!
and ~24!. The mass distribution functionf, the mass density
r, and the velocity distributionf (v) become, respectively,

f ~r ,v !5Cu2Eu2[(D2a)d1(D22)]/2, ~27!

rªSDE dvvD21f ~r ,v !;r a2D12/d, ~28!

f ~v !ªSDE drr D21f ~r ,v !;vad122D, ~29!

whereE denotes the mean field energy

Eª
1

2
v21F0 . ~30!

The ratio of the average of the kinetic energy to the p
tential energy is as follows:
05111
-

^F0&

^K&
5

~D2a!d24

2D
. ~31!

Since the solution~27! we obtained is a bounded solution
which satisfies the following condition:

~D2a!d24

2D
,21, ~32!

the specific heat of the self-similar stationary solution is
ways negative. Thed* corresponds to a virial equilibrium
state:

d* 5H 2
4

a
~a5” D !

arbitrary ~a5D !.

~33!

If ( D2a)(d2d* ),0, the potential energy in this state
more dominant than in the virialized state.

The relation between pressureP and mass densityr can
be written in the form

P;r11$1/11[a2D]d/2%. ~34!

The above equation of state corresponds to Polytropes
when identifying the Polytropes indexn as 11(a2D)d/2.
Note that fora5D, there is no self-similar stationary solu
tion corresponding to the isothermal state.

As for gravity case (a5D22), the above solutions~24!
and~27! in D53 correspond to the solution derived by He
riksen and Widrow@16#. For D51 and D52, where a
5D22<0, we show the self-similar stationary solution
Appendix B.

IV. LINEAR PERTURBATION ANALYSIS

In this section, we investigate the stability of the se
similar stationary solution derived in the preceding sect
for a symplectic linear perturbation, by energy function
analysis@11–14#.

As for the linear stability of the stationary solution i
CBE of the gravity in three-dimensional space, there h
been much research@18–24,11–14#. For the stationary state
assuming spherical symmetry, characterized by the mass
tribution functionf 0 specified as a function of the mean fie
energy E and the squared angular momentumJ2, if
] f 0 /]E,0 and] f 0 /]J2,0, then the system is stable to th
linear perturbation.

Following the work by Perez and Aly@13#, where the
stability of stationary solution in the coupled CBE and Po
son equation with spherical symmetry in three-dimensio
space were studied, we study the stability of the solut
obtained in the preceding section.

First, we explain a symplectic linear perturbation by e
ergy functional analysis@11–14#. In terms of the mass dis
tribution function f (x,v,t), the HamiltonianH is written as
follows:
2-3



he

ar
n
s

a

tio
r

s

-
nc

n

tion

.
e

e
ion,
ve

OSAMU IGUCHI PHYSICAL REVIEW E66, 051112 ~2002!
H5E dG
v2

2
f ~x,v,t !1

G

2 E dGE dG8G~ ux

2x8u! f ~x,v,t ! f ~x8,v8,t !, ~35!

wheredGªdDxdDv is the 2D phase volume element and t
kernelG satisfies

F~x!5GE dG8G~ ux2x8u! f ~x8,v8,t !. ~36!

We consider a small perturbation around the station
solution f 0. The distribution function and the Hamiltonia
can be expanded around the stationary solution as follow

f ~x,v,t !5 f 01d (1)f 1d (2)f 1•••, ~37!

H5H01d (1)H1d (2)H1•••. ~38!

Here we consider any symplectic perturbation, which c
be generated from the stationary solutionf 0 by use of a
canonical transformation. By using some generating func
K, any symplectic deformation can be expressed in the fo

f 5e[K,•] f 0 . ~39!

From the above definition~39!, f can also be expressed a
follows:

f 5 f 01@K, f 0#1
1

2!
†K,@K, f 0#‡1

1

3!
@K,†K,@K, f 0#‡#1•••.

~40!

Introducing a small parametere which represents the am
plitude of the perturbation, we expand the generating fu
tion K as

K5eK (1)1e2K (2)1e3K (3)1•••. ~41!

Further identifyingg(n)5enK (n), we obtain the perturbed
quantities in Eq.~37! in the form

d (1)f 5@g(1), f 0#, ~42!

d (2)f 5@g(2), f 0#1
1

2
†g(1),@g(1), f 0#‡. ~43!

The first-order term in Eq.~38! becomes

d (1)H5E dGE@g(1), f 0#, ~44!

whereE is the energy of a particle,

Eª
v2

2
1F0 , ~45!

whereF0 is the potential energy generated byf 0. SinceE
and f 0 are conserved quantities,d (1)H50.

The next order term in Eq.~38! yields
05111
y

:

n

n
m

-

d (2)H5E dGE@g(2), f 0#1
1

2E dGE†g(1),@g(1), f 0#‡

1
G

2 E dGE dG8G~ ux2x8u!@g(1), f 0#@g(1)8, f 08#.

~46!

The first term in Eq.~46! also vanishes and by the integratio
by parts; Eq.~46! is rewritten in the form

d (2)H52
1

2E dG@g(1), f 0#@g(1),E#1
G

2 E dG

3E dG8G~ ux2x8u!@g(1), f 0#@g(1)8, f 08#. ~47!

Hereafter we consider the case that the stationary solu
f 0 is a function of only the energyE. In this case, we obtain

@g(1), f 0#5FE@g(1),E#, ~48!

E dDv@g(1), f 0#5E dDv]x~FEvg(1)!, ~49!

whereFEª]Ef 0.
Integrating by parts and using Eqs.~48! and~49!, we have

d (2)H5
1

2E dG~2FE!u@g(1),E#u21
G

2 E dG]x~2FEvg(1)!

3E dG8]x8~2FE8v8g(1)8!G~ ux2x8u!. ~50!

The linear perturbationg(1) has two kinds of gauge mode
~a! g(1)5g(1)(E). In this case, the linear perturbation of th
mass distributiond (1)f is trivially zero. ~b! g(1)5av (a is a
constant!. This perturbation is due to the translation of th
center of mass. In order to consider the physical perturbat
we investigate the linear perturbation excluding the abo
gauge modes.

The stability for the linear perturbation@24,25# reads

If d (2)H.0, then the system is stable. ~51!

A. Spherical mode

Since the first-order perturbed potentiald (1)F(r ) satisfies

1

r D21
] r~r a11] rd

(1)F~r !!

5SDGE dDv8@g(1)8, f 08#

5SDG
1

r D21
] r S r D21E dDv8FE8v r 8g(1)8 D ,

~52!

the spatial derivative ofd (1)F(r ) becomes
2-4
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] rd
(1)F~r !5

SDG

r a2D12E dDv8FE8v r 8g(1)8. ~53!

From Eqs.~50! and ~53!, we have

2d (2)H5E dG~2FE!u@g(1),E#u22E dG] r

3~2FEv rg(1)!d (1)F~r !

5E dG~2FE!u@g(1),E#u22SDGE dDx

r a2D12

3E dDv~2FEvg(1)!E dDv8~2FE8v r 8g(1)8!.

~54!

Introducing new variables,

g(1)5:rv rm~r ,v,t !, ~55!

and using the Schwartz’s inequality, we have

2d (2)H5E dG~2FE!u@mrv r ,E#u22GSD

3E dDx

r a2D12E dDv@2FEr ~v r !2m#

3E dDv8@2FE8 r ~v8r !2m8#

>E dG~2FE!u@mrv r ,E#u2

2GSDE dDx

r a2D12E dDv@2FEr ~v r !2m2#

3E dDv8@2FE8 r ~v8r !2#

5E dG~2FE!H u@mrv r ,E#u22
GSD~rv r !2m2r0

r a2D12 J ,

~56!

wherer0 is the nonperturbed mass density,

r0ªE dDv f 05E dDv~2FE!~v r !2. ~57!

Using the property of the Poisson bracket and the fact
the integral of the Poisson bracket over the phase space
ishes, Eq.~56! can be rewritten in the form
05111
at
n-

2d (2)H>E dG~2FE!H u@mrv r ,E#u22
GSD~rv r !2m2r0

r a2D12 J
5E dG~2FE!H ~rv r !2u@m,E#u21umu2u@rv r ,E#u2

1rv r@m2,E#@rv r ,E#2
GSD~rv r !2m2r0

r a2D12 J
5E dG~2FE!H ~rv r !2u@m,E#u21umu2u@rv r ,E#u2

1†m2rv r@rv r ,E#,E‡2umu2rv r
†@rv r ,E#,E‡

2umu2u@rv r ,E#u22
GSD~rv r !2m2r0

r a2D12 J
5E dG~2FE!H ~rv r !2u@m,E#u2

2umu2rv r
†@rv r ,E#,E‡2

GSD~rv r !2m2r0

r a2D12 J . ~58!

Using the following relation:

†@rv r ,E#,E‡52rv rS d2F0

dr2
1

3

r

dF0

dr D
52rv rS GSDr0

r a2D12
1

22a

r

dF0

dr D , ~59!

we obtain the final expression of the form

d (2)H>
1

2E dG~2FE!~rv r !2S u@m,E#u21umu2
22a

r

dF0

dr D .

~60!

From Eqs.~42!, ~47!, and ~60!, if d (2)H50 ~when FE,0
and a<2), d (1)f 50. Since this is a gauge mode, we co
clude that

if FE,0 and a<2, then d (2)H.0. ~61!

From the self-similar stationary solution, Eq.~23!, we
have

FE5sgn~E!@~a2D !d122D#Cu2Eu [(a2D)d2D]/2.
~62!

As an explicit example, we considerD51 case. From
Eqs.~25!, ~26!, ~32!, and~61!, the self-similar stationary so
lution, Eq. ~27!, is stable if the following condition is satis
fied:

2
1

a21
,d,2

2

a
~1,a<2!,
2-5
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d,2
2

a
~0,a<1!. ~63!

In Fig. 1, we show the region where the stable self-sim
stationary solution exists in the parameter space (a,d).

Note that in the above calculation, we use the integrat
by parts and neglect the surface term at the origin. Since
self-similar stationary solution obtained in this paper is s
gular at the boundary, the surface term cannot be negle
in general. In the realistic situation, however, the se
similarity appears in the intermediate scale since the sys
has a cutoff scale in the short distance. We suppose tha
self-similar stationary solution can be connected with so
regular solution near the boundary by regularization, such
r→(r 21a2)1/2, wherea is a cutoff scale, and the bounda
term can be neglected.

B. Aspherical mode

Next we consider the aspherical mode. Since it is diffic
to analyze a general case, we study the gravity case
D-dimensional space (a5D22).

By the integral of Poisson equation over the configurat
space and integration by parts, we have

2
1

SD
E dDxu“d (1)Fu25E dGd (1)f d (1)F, ~64!

where

d (1)FªE dDvGd (1)f . ~65!

From Eqs.~47!, ~64!, and~65!, we have

d (2)H5
1

2E dG
~d (1)f !2

2FE
2

G

2SD
E dDxu“d (1)Fu2. ~66!

Here we introduced (1) f̃ as follows:

d (1)f 5:FEd (1)F1d (1) f̃ . ~67!

Substituting Eq.~67! into Eq. ~66!, we obtain

FIG. 1. Stability chart for the one-dimensional case (D51).
The dark region corresponds to the stable region~63! in the param-
eter space (d,a). The properties of the specific heat and the ext
sivity are also shown.
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d (2)H5
1

2E dGF ~d (1) f̃ !2

2FE
1FE~d (1)F!222d (1)f d (1)FG

2
G

2SD
E dDxu“d (1)Fu2,

5
1

2E dG
~d (1) f̃ !2

2FE
1

1

2SD
E dDxH u“d (1)Fu2

2SDF E dDv~2FE!ud (1)Fu2G J . ~68!

Moreover, using the new variablew, which is defined by

d (1)F5:w~x,t !] rF0 , ~69!

we can rewrite Eq.~68! in the form

d (2)H5
1

2E dG
~d (1) f̃ !2

2FE
1

1

2SD
E dDxH ~] rF0!2F u“wu2

2SDE dDv~2FE!uwu2G2uwu2] rF0“
2] rF0J .

~70!

By straightforward calculation, we obtain

“

2] rF05SDE dDvFE] rF01~D21!
] rF0

r 2
. ~71!

By using Wirtinger’s inequality, we have

E F u“swu22
D21

r 2
uwu2GdV>0, ~72!

where

“sª“2
r

uru
]

]r
.

From Eqs.~70!–~72!, we get the final expression in th
form

d (2)H5
1

2E dG
~d (1) f̃ !2

2FE
1

1

2SD
E dDx~] rF0!2F u] rwu2

1u“swu22
D21

r 2
uwu2G

>
1

2E dG
~d (1) f̃ !2

2FE
1

1

2SD
E dDx~] rF0!2u] rwu2.

~73!

From Eq. ~73!, if d (2)H50 ~when FE,0), then d (1)f
50 or g(1)5av. Since this is a gauge mode, we conclu
that

if FE,0, then d (2)H.0. ~74!

-

2-6
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This condition is weaker than the condition~61!. In the grav-
ity case (a5D22), from Eqs.~25!, ~26!, ~32!, and~61!, if
the following condition is satisfied, the self-similar stationa
solution, Eq.~27!, is stable:

d* 5H d,2
2

D22
~2,D<21A2!

d,22D ~21A2,D<4!.

~75!

In Fig. 2, we show the region where the stable self-sim
stationary solution exists in the parameter space (D,d). This
stability condition~61! is consistent with the work by Pere
and Aly @13# (a51,D53).

V. DISCUSSION

We studied the self-similar stationary solution in col
sionless Boltzmann equation with the attractive 1/r a poten-
tial. Assuming the spherical symmetric and isotropic orbit
D-dimensional space, we investigate the linear stability
the solution. In the above model, we can control the ext
sivity of the system and the signature of the specific hea
changing the spatial dimensionD and the exponent of in
verse power of the potentiala.

The self-similar stationary solution can be expressed
the form of the power law of the energy. The exponent of
power is determined by the power of the potentiala, spatial
dimensionD, and the scaling parameterd. Here we interpret
d as a parameter that denotes the virial ratio of the ini
state.

By use of the energy functional approach, we investiga
the stability of the self-similar stationary solution in terms
a symplectic linear perturbation. As for the spherical sy
metric and isotropic orbit of the gravity in D-dimension
space (a5D22), we found that the system is stable if th
mass distribution function decreases monotonically and
spatial dimension is less than 4. As for the power law pot
tial in one-dimensional space (D51), we found that the
system is stable if the mass distribution function decrea
monotonically and the inverse power index of the potentia
less than 2. The self-gravitating ring model@7# is similar to
the case ofa51 in one-dimensional space. From the form
the velocity distribution obtained by a numerical simulatio

FIG. 2. Stability chart for the gravity case (a5D22). The dark
region corresponds to the stable region~75! in the parameter spac
(d,D). The properties of the specific heat and the extensivity
also shown.
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d;23. This case belongs to the stable self-similar stati
ary solution.

The stable self-similar stationary solution we obtained
cludes the virial equilibrium state in the case ofd5d* . As
for the extensivity of the system, the nonextensive syst
has far more stable scaling solutions than the extensive
tem in the parameter space (d, a, D).

In the time evolution of the collisionless system, assu
ing the spherical symmetry and isothermal case, the Lars
Penston solution that shows self-similar collapse is the
tractor@26#. By such a self-similar time evolution of system
we expect that the class of the stable self-similar station
solution obtained in this paper plays an important role a
quasiequilibrium state with a long-range interaction such
gravity. In the realistic situation, since the anisotropic velo
ity space is important, we would like to extend this analy
to the anisotropic case in our future work.
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APPENDIX A: TRANSFORMATION TO THE
SELF-SIMILAR COORDINATE

Using the original coordinate (r ,v), the self-similar coor-
dinate (R,X) is defined by

Rªd21 ln~r udu!, ~A1!

Xªve2nR. ~A2!

The derivative with respect to the original coordinate c
be expressed by the self-similar coordinate of the form

] r5S ]R

]r D U
X

]R1S ]X

]r D U
R

]X5sgn~d!e2dR~]R2nX]X!,

~A3!

]v5S ]X

]v D U
R

]X5e2nR]X . ~A4!

APPENDIX B: STABILITY CONDITION FOR THE
GRAVITY CASE IN DÄ1 AND DÄ2 „aÄDÀ2…

For the case that the potentialF̄ is positive, Eq.~22! is
modified as

2n2F21~D22!
d

nGF̄5SD
2 GE

0

`

XD21 f̄ dX. ~B1!

1. DÄ1 case

Since the potentialF̄ is positive, from Eq.~B1!,

d,2. ~B2!

By integrating Eq.~B1!, we have a self-similar solution
~23! and

e
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C5
u22duG~d21/2!u2F̄ud

ApGG~d21!
, ~B3!

if the following condition is satisfied:

d.1. ~B4!

From Eqs.~B2!, ~B4!, ~61!, and~74!, the stability condi-
tion for linear perturbation yields

1,d,2. ~B5!

The ratio of the average of the kinetic energy to the p
tential energy is the same as Eq.~31! in D51. However, if
d<2, the integral of the kinetic energy over the veloc
space diverges. For this reason, there does not exist a s
self-similar stationary solution inD51.

2. DÄ2 case

If the potential F̄ is negative, the condition that th
bounded self-similar solution exists is the same as Eqs.~25!
and~26!. Since this case does not satisfy the condition~26!,
the only case is thatF̄.0.
J

. J

a

tt

05111
-

ble

In this case, from Eq.~B1!, the condition that a bounde
self-similar solution exists yields

d.
1

2
, ~B6!

and the integral constant of Eq.~23! is

C5
2G~d!u2F̄ud

p5/2GG~d21/2!
. ~B7!

From Eqs.~61!, ~74!, and ~B6!, the stability condition
against linear perturbation yields

d.
1

2
. ~B8!

The ratio of the average of the kinetic energy to the p
tential energy is the same as Eq.~31! in D52. However,
similar to theD51 case, ifd<2, the integral of the kinetic
energy over the velocity space diverges. Finally, ifd.2, the
self-similar stationary solution inD52 is stable. In this case
the specific heat is always positive.
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